Design of Viscoelastic Auxetic Materials Through Machine Deep Learning

<u>Chun-Wei Liu</u>, Pei-Chen Cheng, Jyun-Ping Wang and Yun-Che Wang

AI Materials Lab

Civil Engineering Dept, NCKU, Taiwan(R.O.C.)

AN EMBRYONIC THOUGHT

THE MACHINE LEARNING MODEL

METHODOLOGY

RESULTS

APPLICATIONS

QUESTIONS

APPENDIX

Outline

Design the mechanical properties we desire, with constraints.

What if we start from random samples?

And let them just evolve, in case we may discover more potential paradigms.

Artificial Neural Network

Input Layer

Convolution and Pooling Layers

Output and Loss Layer

VGG19

90% classification

accuracy.

ImageNet Large Scale Visual Recognition Competition

over 10 million image data and 1000 classes

Loss and Optimizer

Flow Chart

Samples

Solid Boundary

Smooth Angle

Linear viscoelasticity: dynamic response

Methodology

Linear Elastic Material The Navier Equation

For isotropic elasticity, the Navier equation is to be solved for displacement fields **u**.

$$\mu \nabla^2 \mathbf{u} + (\lambda + \mu) \nabla (\nabla \cdot \mathbf{u}) = \rho \ddot{\mathbf{u}} \quad \text{or} \quad \nabla \bullet \boldsymbol{\sigma} = \rho \ddot{\mathbf{u}}$$

In index notation

 $\mu u_{i,kk} + (\lambda + \mu) u_{k,k,i} = \rho u_{i,tt} \quad \text{or} \quad C_{ijkl} u_{k,jl} = \rho u_{i,tt}$ With the engineering strain, Stress tensor can be found. $\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}) \quad \sigma_{ij} = C_{ijkl} \varepsilon_{kl} = C_{ijkl} u_{k,l} \quad \overline{\sigma}_{ij} = \overline{C}_{ijkl} \overline{\varepsilon}_{kl}$ With the coefficients

$$\overline{C}_{ijkl} = \overline{\lambda} \delta_{ij} \delta_{kl} + \overline{\mu} (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$

The volume-averaged stress and strain are defined by

$$\overline{\sigma}_{ij} = \frac{1}{V} \int_{\Omega} \sigma_{ij} dV = \frac{1}{V} \int_{\partial \Omega} t_i x_j dA \qquad \overline{\varepsilon}_{ij} = \frac{1}{V} \int_{\Omega} \varepsilon_{ij} dV = \frac{1}{2V} \int_{\partial \Omega} \left(u_i n_j + u_j n_i \right) dA$$

When **viscoelastic properties** are considered, the Boltzmann superposition leads to the following constitutive relation in time domain. 2 (

$$\sigma_{ij}(t,x_1,x_2,x_3) = \int_0^t E_{ijkl}(t-\tau,x_1,x_2,x_3) \frac{\partial \varepsilon_{kl}(\tau,x_1,x_2,x_3)}{\partial \tau} d\tau$$

$$\tilde{\sigma}_{ij}(\omega, x_1, x_2, x_3) = E_{ijkl}^*(\omega, x_1, x_2, x_3)\tilde{\varepsilon}_{kl}(\omega, x_1, x_2, x_3)$$

$$E^{*}(\omega) = E'(\omega) + iE''(\omega)$$
$$\tan \delta(\omega) = \frac{E''(\omega)}{E'(\omega)}$$

$$\left[M_{jk}-\rho c^2\delta_{jk}\right]f_k''=0 \quad u_k=f_k(\mathbf{n}\bullet\mathbf{x}-ct)$$

$$M_{jk} = n_i C_{ijkl} n_l \qquad \det \left[M_{jk} - \rho c^2 \delta_{jk} \right] = 0$$

FEM Calculations for Elastic or Viscoelastic Properties

Results

13

Data Distribution

Application

Machine Learning

Classical

Generating sample Caculating No.19779 Time cost: 9.906250 sec Start running analysis Storage elastic modulus E_p at 3 = 20079083.285715 N/m^3 Loss elastic modulus E_pp at 3 = 7.264534 N/m^3 Tensile loss tangent at 3 = 0.000000361796 Complex elastic modulus |E*| at 3 = 20079083.285716 N/m^3

time cost: 0.593750 sec

total time cost: 10.500000 sec Generating sample Caculating No.19780

Lower computation cost when scale up. Fast and easy to deploy with high accuracy. Implies a convenient path to the topology optimization process. X

Summary

- VGG network architecture was introduced to design materials for desired elastic or viscoelastic properties.
- Well-trained DNN may provide lower computational cost, without loosing prediction accuracy, as oppose to full FEM calculations.

Questions or Comments

Linear viscoelasticity: dynamic response

Viscoelastic Material Model for high damping rubber

- Bulk modulus (K=400 MPa) is assumed to be purely elastic
- Generalized Maxwell model for shear modulus with the elastic branch G=58.6 kPa

$$G'(\omega) = G + \sum_{m=1}^{N} G_m \frac{(\omega \tau_m)^2}{1 + (\omega \tau_m)^2}$$

$$G''(\omega) = \sum_{m=1}^{N} G_m \frac{\omega \tau_m}{1 + (\omega \tau_m)^2}$$

Parameters for the 18-branch shear modulus to realistically describe a high damping viscoelastic material

- 1) 13.3[MPa] 1e-7[sec]
- 2) 286[MPa] 1e-6[sec]
- 3) 291[MPa] 3.16e-6[sec]
- 4) 212[MPa] 1e-5[sec]
- 5) 112[MPa] 3.16e-5[sec]
- 6) 61.6[MPa] 1e-4[sec]
- 7) 29.8[MPa] 3.16e-4[sec]
- 8) 16.1[MPa] 1e-3[sec]
- 9) 7.83[MPa] 3.16e-3[sec]
- 10) 4.15[MPa] 1e-2[sec]
- 11) 2.03[MPa] 3.16e-2[sec]
- 12) 1.11[MPa] 1e-1[sec]
- 13) 0.491[MPa] 3.16e-1[sec]
- 14) 0.326[MPa] 1[sec]
- 15) 0.0825[MPa] 3.16[sec]
- 16) 0.126[MPa] 10[sec]
- 17) 0.0373[MPa] 100[sec]
- 18) 0.0118[MPa] 1000[sec]

Viscoelastic Spectra of the Models

Boundary, Loading Conditions and Elastic Constants

